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FOREWORD

This is the Final Technical Report of the Gallium Phosphide Star Position
Sensor Program. This program was sponsored by the Air Force Systems Command,
Air Force Avionics Laboratory, Wright-Patterson Air Force Base, Ohio, under
Contract No. F33615-75-C-1041. This work was performed from July 1, 1975
through April 30, 1976. The Project Engineer was Dr. R. A. Rotolante and
Principél’IﬁVesEigator was Dr. A.M. Chiang. The Program Manager was
J.R. Farrell. Acknowledgements are due to Mr. J. Gelpey who helped supervise
the fabrication and testing of the GaP photodiodes. Thanks are also due to
Mr. B. Denley who fabricated most of the detectors and Mr. R. Healey who
obtained most of the test data. The Program Contract Monitor, Mr. Charles
Ennis, provided considerable technical direction during the course of the
program.
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SUMMARY

S e e

Mg+ ion implanted GaP p+ on n-junction photodiode detectors have
been developed for star sensor applications. The sensitivity (NEPs) of
these detectors in the wavelength region between 0.34 to 0.48um are better
than UV enhanced Si photodiodes. For example, an NEP as low as 1.6 x 10-14
W/Jﬁ: and a quantum efficiency of 40% has been obtained on these detectors at
0.44 ym. No 1/f noise has been observed on these diodes.
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SECTION 1

INTRODUCTION

This is the final technical report under AFAL Contract No.
F33615-75-C-1041. The specific objectives of this program were to fabricate,
test and deliver five single-element (detector size 0.01 x 0.01 inch?) gallium
phosphide photovoltaic detectors with performance design goals (for each element)
of n > 30% and NEP < 2.5 x 10-14 w/Hz at A = 0.4 um. These detectors are
intended as a feasibility sample tor eventual developueil of arrays and,
finally, reach-through avalanche photodiodes for use in a synchronous orbit,
strapdown star sensor. Additionally, photoconductive test samples were
fabricated in order to evaluate the characteristic of copper-doped GaP
crystals prepared by the Corporate Research Center under AFML funding.

The work effort under this contract resulted in the production,
test and delivery of five high performance Mg+ jon implanted GaP photovoltaic
detectors. Four of the five detectors shipped have a NEP less than
1.6 s 10-M4 wiTz, which well exeveds the speeificaticn. The fifth device
has a NEP of 3.6 x 10-14 w/yHz.

Use of ion implantation to incorporate dopants into semiconductors
has proven to be extremely useful for many applicationsl’z. Principally,
implantation allows accurate control of both the doping concentrations and
profiles. It also yields a high purity doping source because the implanted
specie is selected with a mass analyzer. This is in direct contrast to a
diffusion process in which all the impurities present in the furnace, or
contaminants on the semiconductor surface, will diffuse into the crystal
along with the desired dopant.

Recently, there have been a number of studies of ion implantation
in GaP.3- Most previous workers were interested in incorporating optically
active impurities into GaP by ion implantation as a possible fabrication
technology for light emitting diodes. Cathode luminescence from Zn-0 pairs
generated by oxygen implanted into Zn-doped Gap has been observed by Lacey,
et. al.3 An investigation of nitrogen implantation in GaP4 showed that
a large substitutional concentration of nitrogen could be achieved, but the
luminescence intensity was < 1% of that obtained using conventional doped
crystals having comparable nitrogen concentration. Merz et. al.”s
investigated photoluminescence from the Bi isoelectron trap implanted into
CaP for various ion doses and anneal conditions. For the optimum dose and
anneal, one observed only " 10% of the light intensity expected from
the estimated number of substitutional ions. The above results indicated
that the performacne of light emitting diodes made from the ion implantation
can be seriously affected by the lattice damage introduced during the implant
process. Therefore, a rather extensive study of the nature of the implant-
induced damage and the recovery of the damaged crystal as a result of annealing
during and after implantation in GaP has been carried out by many w0rkers.7'11
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In spite of these rather extensive investigations of ion implanta-
tion in GaP, until recently, little or no work has been devoted to the use of
ion implantation in GaP as a possible fabrication technique for photosensitive
devices, such as UV to visible photovoltaic detectors. T. Inada et. al.12
observed the photovoltaic effect of Mg and Zn implanted into sulfur doped

GaP junctions. The purpose of their photovoltage measurement was to determine
the junction depth, i.e., the open circuit voltage of the p-n junction was
measured by illuminating the implanted surface and followed by a layer
removal process. The depth of the junction was determined as the depth

where the photovoltage disappeared. No quantitative photoresponse measurement
of the ion implanted junction was reported.

In GaP, the value of absorption coefficient, o, rises rapidly
for photons with energy above the direct bandgap, Eg = 2.8 eV. For example,
o =7zx 10% cm~l at 3.1 eV and a shallow junction is required to collect all
] the photon generated electron-hole pairs. This shallow junction can be
; achieved by using ion implantation technology.

During the course of this program, the process of Mg+ ion implant
into n-type undoped GaP to form a p-n junction for photon detection was
developed and optimized. Combinations of implant ion energies, doses and
annealing conditions were investigated. The optimum process, defined here

i as that which provides low leakage current and high collective quantum
efficiency at 0.4 um, was established. During this program, we observed

that the successful application of ion implantation to GaP depends critically
on an ability to control the surface composition during the post-heat
treatment which is needed to anneal out the radiation damage and to activate
the implanted ionms.

i We have observed that the implantation induced lattice damage in
GaP leads to the creation of an amorphous layer or the substrate material.
However, post-anneal at > 850°C is sufficient to allow the amorphous layer
to regrow epitaxiallvy onto the substrate and to restore the lattice structure
of GaP to monocrystalline form. After implantation, the implanted impurities

1 t are probably at the interstitial lattice sites and, therefore, not capable

. of contributing to the electrical activities in the normal manner. Post-heat
5 s; " treatment is required to move the ions to substitutional sites and to be

i & electrically active. At an anneal temperature of 850°C, enough implanted
B Mg+ ions are activated to form a p-n junction structure and detectors with
- NEP as low as 1.6 x 10—14 W/ Hz at 0.4 um have been observed. However,

~i the electrical properties of the implanted layer, such as mobility and

i carrier concentration as a function of heat treatment during and after

implantation requires further investigation.

E Section 2 describes the device design and fabrication process

¢ developed during this program. The electrical and optical properties of
the implanted junction are discussed in Section 3. Finally, the test report
of the five delivered junction diodes is included as Appendix A.




SECTION II
3 DESIGN AND FABRICATION

1. Device design. The design goal of this program is a GaP pn junction
detector with quantum efficiency of 30% at A = 0.4 um. The absorption
coefficient, a, of GaP at that photon energy is about 7 x 10%cm , see Figure
1, which corresponds to an absorption length of 0.14 um. Therefore, a

§~ rather shallow junction is required to collect the photon generated electron-
hole pins.

Under steady-state conditions, the total short-circuit current
density of a p on n junction is given by:

= + +J
Teor = Jazee,n ¥ Jar ¥ Jaise,p W

g where Jdiff,n is the electron diffusion current density due to carriers
L generated in the p+ region. Jdr is the drift current due to carriers
generated in the depletion region, and Jaifsf ,P is the hole diffusion

E current density due to carriers generated in the bulk of the semiconductor
; : (See Figure 2).

+
Let us now derive the diffusion current from the surface region (p ).

The motion of the photogenerated minority carriers (electrons) in the layer
is governed by:

J

diff, d
L =D —n (2)
q e dx
) -0, X n-n
d diff,n A o
i -— () =g -R =
] x g ) T o) (-Re - 3)
'+ * e
! i; where y , T , D are electron mobility, lifetime apd diffusivity, respectively,
4 ¢4 ¢ is the monoghromatic incident flux (photons/cm -s), o.,R are the absorption
P coefficient andreflectance at the incident wavelength ), respectively, and
b n is the carrier density at thermal equilibrium. The above minority diffusion
~ equation can be solved analytically with the assumption that D s M 4 T , @are
e
i : constant throughout the surface layer end the boundary conditions:

1) at the surface, x = 0

[ f
_dinLn 25 4)
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where s is the surface recombination velocity:
2) at the junction interface, x = a,

n=20 (5)

The diffusion current density from the p region into the depletion
region can be expressed as

4 %— cosh zﬂ + %— sinh %—

. 1 -o.a  Q -0y a e e e e

1 Jdiff.n an e GX + L e s a N 1 Lo a_

: € D sinh L L L

| e e e

= 4+

| L (D “’\)

d _ e e (6)
4 S a 1 a

1 —_ —_— 4 — ——

! D sinh L L cosh L
e e e e
{, where:
t -q0, ¢, (1-R)
4 T Q= 2 2 H Le =,/ D 1is the electron diffusion
{ a, - L, € € length N

3 The drift current in the depletion regiop is given by:
3
3 atW -dAx
3 Jdr =f axd)o(l-R)e dx, where W is the depletion width.

. a

It is straightforward to derive:

] [ a,a a, (a+ w)]

1 4 J = e a -R) . (8)
13 dr q¢0 € e A (1-R)

b

4 Similarly, one can derive the diffusion current from the n region

into the depletion region, that

-0y d
—a(a+w| 1 d-a-W . e A
J = ‘e N —= . -

! difg,p - 7€ L COth(L ) %17 T einh jd-aw 9
: P P P (————L
5
b Bt 6
=

)




where:

-

Q" = 5 2 where d is the device thickness
ax - Lp and Lp is the hole diffusion length.

The quantum efficiency of a photodiode is defined as:

J J +J +J
" = tot _ diff,n dr diff,p (11)
a9, a9,

d Using the material parameters 1isted in Table 1, quantum efficiency at
0.4 um of an ion implanted GaP photodiode has been calculated:

n= (0.5+ 0.26 + 0.02)(0.62) = 0.47 (12)

One can see that, with a shallow junction, over 40%, quantum efficiency
} at 0.4 um of a GaP photodiode can be achieved.

Table 1
GaP MATERIAL PARAMETERS USED IN CALCULATION OF EQUATION (12)

L =0.5um L, = 0.5 ym

b e h

L 2 2

¢ D = 2.58 cm /s D =1.4 cm /s

& E = h

g 5 4 -

by § =1x 10" cm/s o =7 % 10 cm

Ly 0.4 Ym

o a=0.15 um W=0.2 um

g‘-; . :

. 16 -

L4 Nd =5x 10  cm R = 0.38
3 i ’ d = 300 ym
3 2. Process consideration. The major process considerations in constructing
;f an ion implanted GaP photodiode are: (1) the range-energy relation of the
3 implant ions for achieving the desired junction depth, impurity concentrations
and profile; (2) the proper heat treatment during and after implant to anneal

: the implant induced crystal damage and to activate the implant impurity.
‘\‘ ﬁ ‘*
B 15 7
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Junction depth can be predicted with relative accuracy from range
energy calculation using a computer program developed by Johnson and Gibbons,
which is based on the LSS theory.15 The projected range, Rp, and the range
struggling, AR_, of Mg+ in GaP are plotted in Figure 3, as a function of
implant energy. According to LSS theory, the implanted ions in the substrate
follows a Gaussian distribution i.e., the concentration N(x) of implanted
ions at depth x from the surface is given by:

2
x - R
N(x) = N e_l/2 ——F (13)
max ARP

In equation (13), Nmax is the peak concentration of the profile corresponding

ineds

Q S
Nmax p \ (14)
2 AR
‘/TT P

\\

to x = Rp’

where Q is the implant dose. Figure 4 shows Ehe predicted Mg+ distribution
in GaP for two implant energies. Note, these co puted values are based on
the assumption that the implant ions are 100% substitutional in the lattice
site and electrically activated. The implant dose“and implant energy used
in the figure represent the approximate region of interest in this program
to produce a shallow, abrupt p+ on n junction.

8
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SECTION 111

ELECTRICAL AND OPTICAL PROPERTIES

1. Detector testing and selection procedure. In this program, we
followed the testing and sclection schedule ahown In Figure 5. After ion
implementation and post annealing at Z_850°C, ~afers were inspected under

a 100X microscope. Only those wafers with a relatively smooth and pit-free
surface were processed further. Badly decomposed wafers due to poor oxide
coating were rejected at this point.

After a p-n junction diode was completely fabricated, a probe
station was used to measure the current-voltage characteristics and short
circuit photocurrent of the diode through a Tektronix Curve Tracker Model
576. Based on these initial measurements, those diodes exhibiiing reasonably
good characteristics were mounted on dual-in-line packages and subjected
to further testing of detector properties, including spot scan of the detector
sensitive area, spectral response, noise, I-V and NEP. Finally, the five
best detectors were selected and delivered to AFAL.

2. p-n junction detector performance

a. Spot scan of detector sensitive area. The detector area and
uniformity were determined by raster scanning the detector with a sharply
focused Tungsten source (spot size 0.001 inch). A typical detector pattern
is shown in Figure 6. One can see that the detector response across the
sensitive area is very uniform. The dip in the off-center area corresponds
to the front contact pad and one mil gold wire. The implant mask was a 13
mil diameter circular pattern. From the spot scan results, one can see
that no side diffusion of the implanted ions were observed after annealing
at 850°C or higher temperature.

b. Spectral response. The spectral response of ion implanted GaP
p-n junction photodiodes was measured by using a Tungsten source and a Jarrel
Ash 0.25 meter monochrometer. An EG&G calibrated Si detector (530-2) was
used to calibrate the light source.

Peak response of those diodes is around 0.445 um as shown in Figures

7,8, and 9. At A = 0.4 um, efficiency of 28% has been measured. Cal-
culated quantum efficiencies at 0.4 um as a function of surface recombination
velocity based on equation 7 and actual fabrication parameters were plotted

in Figure 10, where two different minority (electron) diffusion lengths

were used. Compared with the measured data, it revealed that the surface
recombination velocity of those ion implanted GaP photodiode is larger than
105 cm/s, and the minority carrier diffusion length in the implanted region

is about 0.1 pm. Assuming an electron mobility of 100 cmZ/V—s, it corresponds
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to a minority carrier life time of 3 x 10_11 s. From measurement of the 7
minority carrier diffusion length using the technique of Logan and Chynoweth,
Epstein and Grovesl® have reported that minority carrier lifetime in epitaxially
deposited single crystal gallium phosphide solar cell varies between 10'1

and 10712 g,

There are two possible reasons for the relatively fast decrease
of the spectral response of those diodes below 0.36 um. First, high surface
recombination velocity, as stated above, would result in a poor device UV
response. Secondly, because a Tungsten source was used for the whole range
of measurements (0.25 to 0.52 pm), the combined output from the Tungsten
light source and stray light background of the monochrometer would yield a
false deterfrration of the Cal deteeror performance ar wavelengths below
0.36 um. Improving surface preparation and establishing a built-in electric
field in the iuplanted region by a controlled exponential distributed
implanted profile, the high surface recombination problem can be solved. By
selecting a source with a limited spectral region (i.e., a deuterium lamp for
the UV), the effect of stray light background of the present setup can be
eliminated.

c. Current voltage measurements. The current voltage relation of each
detector was measured with a Keithley electrometer. Typical reverse bias I-V
characteristics are shown in Figures 11 and 12.

For large reverse bias (qVRB/kT > 1), the generation recombination
current density in the diode depletion region is:

W
q ni

J = —

g-r 21 (15)
where W is the depletion width and T is the effective carrier lifetime. It
is straightforward to calculate that for a depletion width of 0.4 um. and
effective lifetime of 3 x 1011 s, the corresponding g-r dark current of
diodes fabricated in the present program is about 4 x 10716 amp.

One can see that, for small area photodiodes, the package leakage
current will be a limiting factor in the reversed bias current voltage
measurement, as shown in Figure 11.

d. Noise. Noise spectra of each detector were measured by using a
Quantech Model 304. At zero bias, no 1/f noise was observed on these diodes

down to 1 Hz (see Figures 13 and 14). At 0.5 volt reverse bias, the observed
excess low frequency noise may come from the feedback resistor, since measurement
made on similar resistors showed essentially identical excess low frequency

noise under bias. At 0.5 V reverse bias, the 1/f noise current knee is

about 50 Hz,
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The equivalent circuit, Figure 15, shows the principal noise
source of a photodiode/preamplifier assembly. The total noise of the system

can be written as:

i “=41"+14 + 1 + 4 + 1 + 1 (16)
Each of the noise terms is described as follows:

1. Short circuit shot noise from background iB

2
1" =2 [qu Qg + QB)]

2. Shot noise from the junction dark current iR

qn, WA

Ro 2T

3. Thermal noise of shunt resistance RS

2
= T/R
ish 4BL] sh

4. 1/f noise

5. Amplifier noise i 2.
na

; 6. Thermal noise from the feedback resistor q?

; o 1 2 - 4kT

f ?% RF %

Since all the noise measurements in this program were carried out in the dark,

@é the background generated noise was eliminated. The temperature dependent
5 noise ofaGaP PV/preamplifier system in the dark is plotted in Figure 16.
¢ Due to the low intrinsic concentration of GaP, the dark current noise of a

GaP device is so low that in practical cases the thermal noise from the 1010
ohm feedback resistance is the dominant noise source. One can see that, in

Figures 13 and 14,all the measured noise is from the thermal noise of the
feedback resistor.
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e. NEP. The noise equivalent power (NEP), of GaP ion implanted GaP
3 photodiodes were calculated, based on the equation:
j §1a
! 1, P E
1 NEP = ——— (17) . *;
s
A comparison of Si, GaP and photomultiplier performance data in the 0.2 to
0.6 micrometer region is shown in Figure 17. The high sensitivity of GaP )
photodiode detectors in the visible and UV region is clearly demonstrated. I
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] SECTION I
1 TABLE 1
DETECTOR DESCRIPTION AND TEST COMDITIONS
Type of Detector Gallium Phosphide Photodiodes
; Detector Size 0.013" diameter
Detector Identification #1: MON1-BC-1,2
1 #2: MONl1-BC-1,4
. #3: MON1-BC-1,6
#4: MON1-BC-1,11
] #5: MON1-BC-1,12
Detector Layout (see diagram)
Detector Configuration p+ on n
B Test Conditions
¥ 10
' Transimpedance used for tests 2.3x107 =&
\ { Spectral Radiometer Calibrated power in 0.012" spot
Spot scan 0.015" spot
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SECTION II
SPECTRAL DATA

FIGURE ;
1 - Combined Spectral Data of the Five Detectors f

2 - Spectral Responsivity of a Typical Detector and
Quantum Efficiency of that Detector vs Wavelength
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SECTION TTIT

NOISE DATA g
Figure 3 - Noise of Detector #1
Figure 4 - Nolse of Detector #2

Figure 5 - Noise of Detector #3

Figure 6 - Noise of Detector #4

Figure 7 - Noise of Detector #5

NOTE: Noise of Ry is calculated Johnson's noise of 2.3x1010 "
feedback resistor: 8.5x10~16 amps/WTz

Figure 8 - Comparitive Detector NEPs
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